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A noninteracting electron gas on a one-dimensional ring is considered at finite temperatures. The localized
spin is embedded at some point on the ring, and it is assumed that the interaction between this spin and the
electrons is the exchange interaction, being the basis of the Ruderman-Kittel-Kasuya-Yosida indirect exchange
effect. When the number of electrons is large enough, it turns out that any small but finite interaction radius
value can always produce an essential change in the spin density oscillations in comparison with the zero
interaction radius traditionally used to model the Ruderman-Kittel-Kasuya-Yosida effect.
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I. INTRODUCTION

The Ruderman-Kittel-Kasuya-Yosida �RKKY� effect is a
phenomenon which plays an important role in formation of
magnetic structures in different systems. The essence of the
effect consists in an indirect interaction between localized
spins placed in a Fermi sea of noninteracting conduction
electrons. The interaction is called indirect because the spins
feel the presence of each other through the electrons sur-
rounding them: a localized spin interacting with the electrons
induces in the electron-gas spin density oscillations which
then make impact on another localized spin. The interaction
underlying the RKKY effect, that is, the interaction between
the localized spin and the electron gas, can be of different
nature. It can be either the hyperfine interaction between a
localized nuclear spin and conduction electrons1 or the ex-
change interaction between the conduction and localized
electrons.2,3 The latter case is realized, for example, in alloys
with transition-metal ions where the conduction s electrons
and the localized d electrons of an ion interact through the
s-d exchange interaction.

To model the RKKY effect it is traditionally assumed that
the interaction between a localized spin and conduction elec-
trons is local in the real space. This is modeled by Dirac’s
delta function.4,5 In the case of the hyperfine interaction this
model looks quite plausible because the size of a nucleus,
being of order 10−6 nm �see Ref. 6�, is small enough. The
RKKY indirect exchange effect based on the hyperfine inter-
action was studied in the scientific literature. In Ref. 7 the
RKKY interaction between nuclear spins embedded in a me-
soscopic ring and a finite length quantum wire was investi-
gated in the presence of a magnetic field. The indirect
nuclear-spin interaction was found to depend on the nuclear-
spin positions, number of the conduction electrons, magnetic
field, and system’s geometry. The influence of electron-
electron interactions and electron-spin correlations on the
RKKY interaction between two nuclear spins was considered
by Semiromi and Ebrahimi.8 The nuclear spins were embed-
ded in a mesoscopic metallic ring. It was numerically shown
that the electron-electron interactions and electron-spin cor-
relations can essentially change the RKKY interaction de-
pendence on the magnetic flux.

However, in the case of the exchange interaction the ionic
spins are much less localized. For example, the ionic radius,

which we will denote by r0, for the f-shell metal ions Er3+

and Nd3+ is r0=0.096 nm and r0=0.108 nm �see Ref. 9�,
respectively. The value of r0 gives an effective radius of the
exchange interaction. Moreover, one can easily conceive a
situation where artificial objects such as quantum dots with
nonzero total spin are embedded in a Fermi sea of conduc-
tion electrons. The interaction between the total spin of such
objects and the electrons is similar to the exchange interac-
tion and produces the RKKY interaction between the total
spins of those artificial objects. The value of r0 can thus be
technologically varied. Systems with quantum dots interact-
ing through the RKKY effect were already investigated in a
number of scientific papers. The RKKY effect between two
quantum dots embedded in an Aharonov-Bohm ring was in-
vestigated by Utsumi et al.10 as a function of a magnetic flux
through the ring. The quantum dots contained odd numbers
of electrons. The interaction between the total quantum dots’
spins and the conduction electrons in the ring was described
by a tunneling Hamiltonian. In this tunneling Hamiltonian
the coupling constant was modeled by the delta function, that
is, the interaction radius was r0=0. In Ref. 11 two localized
spins in one-dimensional �1D�, two-dimensional, and three-
dimensional electron gases were considered. Decoherence of
the spins was studied using the kinetic equation for the re-
duced density matrix. Additionally, a quantum gate consist-
ing of two quantum dots embedded in a two-dimensional
electron gas of GaAs/AlGaAs heterostructure was investi-
gated. The RKKY effect was provided through the s-d ex-
change interaction which was assumed to take place just at
the positions of the localized spins, that is, the interaction
radius was zero. Tamura and Glazman12 studied the RKKY
interaction between the localized spins of two quantum dots
placed at the opposite edges of a 1D conducting channel. The
RKKY interaction between the spins across the channel was
taken into account by virtue of an exchange interaction
where the Fourier transform of the coupling constant was
assumed to be momentum dependent. This in principle
means that the interaction could be nonlocal. However, con-
sequences of this nonlocality were out of focus of that work.
In Ref. 13 the RKKY interaction in a coupled quantum dot
system embedded in a ring with a spin-orbit interaction was
explored in the presence of the Aharonov-Bohm and
Aharonov-Casher effects. The s-d exchange interaction re-
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sponsible for the RKKY effect in this system was also local.
Finally, we would like to mention that effects of the finite

size of the ionic spin distribution on the RKKY interaction
have been studied in bulk systems in connection with ferro-
magnetic Heusler alloys.14–18 However, the models used in
those attempts did not give the delta function in the limit
r0→0.

The purpose of the present work is to verify by means of
a simple model whether, in a mesoscopic ring, a finite value
of r0 can play any role in the formation of the electron-spin
density oscillations which underpin the RKKY indirect ex-
change interaction. In the limit r0→0 the model which we
use gives the delta function. It is shown that if the interaction
radius is finite, its impact on the electron-spin density oscil-
lations is to reduce the oscillation amplitude. An interesting
feature is that when the number of the electrons in the gas is
large enough, this reduction, produced by the presence of a
small domain of size r0, is significant and takes place in the
whole system with much larger size.

The paper is organized as follows. Section II describes a
mathematical formulation of the problem. In Sec. III the so-
lution is obtained using the Matsubara diagrammatic ap-
proach. The results are discussed in Sec. IV.

II. THEORETICAL MODEL

We consider a noninteracting Fermi gas on a 1D ring of
radius R. The electron positions are specified by the polar
angle �. An ion �or another object� with a nonzero total spin
is placed on the ring at �=0. The system is schematically
shown in Fig. 1. The interaction between the localized spin
and conduction electrons is assumed to be an exchange in-
teraction which in general can be nonlocal.

To formulate the problem mathematically we write down
the Hamiltonian of the system in the form:

Ĥ = Ĥ0 + Ĥint. �1�

In Eq. �1� Ĥ0 is the Hamiltonian of the noninteracting
N-electron system on a 1D ring:

Ĥ0 = �
i=1

N

Ĥ0
i , �2�

with

Ĥ0
i = −

�2

2mR2

�2

��i
2 , �3�

where m is the electron mass and �i is the ith electron coor-
dinate. The spin-degenerate eigenvalues of the single-particle

Hamiltonian Ĥ0
i are

�n� =
�2n2

2mR2 , �4�

where n=0, �1, . . ., and � is the spin index. The normalized

eigenstates of Ĥ0
i , �n��, in the coordinate representation are

�����n�� = ����
1

�2	
exp�− in�� . �5�

The term Ĥint in Eq. �1� describes the exchange interaction
between the localized spin and the electron gas, and it is
conventionally written as

Ĥint = �
j=1

N

J�� j�Si� j
i , �6�

where J��� is the coupling function of the exchange interac-
tion, S is the localized spin placed at �=0, � j is the vector of
the electron-spin Pauli matrices, and the summation over the
index i is assumed.

As it was mentioned above, traditionally it is assumed that
the exchange interaction is local, that is, the embedded spin
interacts with the electrons only at �=0. In this case the
coupling function J��� is modeled by the following depen-
dence on the polar angle:

J��� = J���� , �7�

where J is a coupling constant.
In this work we suggest a simple model in which the

localized spin interacts with the electrons in a small vicinity
of the point �=0, and when the vicinity is tightened into a
point at �=0, the model turns into the conventional one �Eq.
�7�	:

J��� =
J

�0
�	
exp�− � �

�0
2� , 0 
 � � 	 ,

exp�− �2	 − �

�0
2� , 	 
 � � 2	 .�

�8�

The size �0=r0 /R of this vicinity is estimated from the ra-
dius r0 of the ion �or from a characteristic size of another
object� which is the source of the spin centered around �
=0. Using the well-known representation of Dirac’s delta
function,

��x� = lim
t→0

exp�− � x
�t
2�

�	t
, �9�

one is convinced that the nonlocal model, Eq. �8�, takes the
local form, Eq. �7�, when r0→0.

FIG. 1. �Color online� A noninteracting electron gas on a 1D
ring of radius R. The localized spin is centered around the ring point
with the polar angle �=0. The localization radius of the spin is r0

which is also estimated to be the radius of the exchange interaction
in the RKKY effect.
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To study whether finite values of r0 have any effect we
will calculate the electron-spin density at finite temperatures.
The electron-spin density operator at point � on the ring is
defined as

n̂s
i��� = �

j=1

N

��� j − ��� j
i . �10�

The electron-spin density at point � is obtained through the
statistical average using the Gibbs grand canonical ensemble:

ns
i��,r0� =

Tr�exp�−
Ĥ − �N̂

kBT
n̂s

i����
Z

, �11�

where we explicitly show that the electron-spin density is
also a function of the interaction radius r0. In Eq. �11� Z is
the partition function:

Z = Tr�exp�−
Ĥ − �N̂

kBT
� . �12�

In Eqs. �11� and �12� kB is the Boltzmann constant, � is the

chemical potential, T is the temperature, N̂ is the particle
number operator, and the trace is taken using a complete set
of states of the Fock space. It is also important to note that,
since the number N of electrons is fixed, the chemical poten-
tial � is not an independent variable but a function of the
temperature T.

III. IMAGINARY TIME GREEN’S FUNCTION SOLUTION

The problem formulated in the previous section is obvi-
ously not solvable exactly. Thus some approximation meth-
ods should be applied. For small values of the coupling con-

stant J in Eq. �8� a perturbation theory, where Ĥint is
considered as a perturbation, can be applied. As the calcula-
tions are performed at finite temperatures, instead of the pure
quantum-mechanical perturbation theory, one has to use the
so-called thermodynamic perturbation theory19 for the quan-
tum statistical averages. This perturbation theory is in gen-
eral valid when the perturbation energy per particle is less
than kBT, i.e., J�kBT. However, very often it happens that,
when T→0, the coefficients of the perturbation expansion
change as functions of T in such a way that the thermody-
namic perturbation theory can remain valid for all tempera-
tures.

Although the thermodynamic perturbation theory gives a
general approach to calculate statistical averages, in its origi-
nal form it is quite cumbersome. It is more convenient to use
this theory reformulated in terms of a diagrammatic ap-
proach, namely, the Matsubara �or imaginary time� diagram-
matic method.20

In order to employ this technique for our purposes we first
rewrite the total Hamiltonian of the problem, Eq. �1�, in the
second-quantized form using the �n�� single-particle basis:

Ĥ = �
n�

�n�an�
† an� +

JSi

2	
�

n�n���

����̂i����

� 1

�0
�	
�

−	

	

d�̃exp�− � �̃

�0
2�

 exp�i�̃�n − n��	�an�
† an���. �13�

The second-quantized form of the electron-spin density op-
erator at point � is

n̂s
i��� =

1

2	
�

n�n���

����̂i����exp�i��n − n��	an�
† an���,

�14�

and the expression for the electron-spin density at point �
may be rewritten as

ns
i��,r0� = − �

���

�����̂i���G�����,�;�,�� . �15�

In the last expression G����� ,� ;�� ,��� is the one-particle
imaginary time Green’s function defined as

G�����,�;��,���

=
1

Z
Tr�exp�−

Ĥ − �N̂

kBT
T�̂���,���̂��

† ���,���� ,

�16�

where T is the time-ordering operator and �̂��� ,�� are the
imaginary time field operators,

�̂���,�� = exp���Ĥ − �N̂�	�̂����exp�− ��Ĥ − �N̂�	 ,

�17�

with �̂���� related to the annihilation operators an� as

�̂���� =
1

�2	
�

n

exp�− i�n�an�. �18�

We now apply the diagrammatic expansion of the Green’s
function G����� ,� ;�� ,���. The effect of the RKKY spin
density oscillations appears already in the first order and thus
we only need to consider the first-order diagram. Such an
approach to the RKKY spin density oscillations was consid-
ered in Ref. 21 for a three-dimensional electron gas. How-
ever, in that case the electron spectrum was continuous and
to perform momentum integrals the linearization of the spec-
trum on the Fermi surface was employed to get the long-
range behavior of the RKKY oscillations. In our problem the
electron spectrum is discrete and instead of integrals we will
have sums over discrete indices. Moreover, since our system
is finite we are interested in the RKKY oscillations in the
whole range and not only at long distances from the local-
ized spin.

The first-order contribution to the Green’s function
G����� ,� ;�� ,�� is
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G���
�1� ��,�;��,�� = −

JSi

�2	�2�
����̂i�����

nn�

exp�− in�

+ in����jnn�snn�, �19�

where

jnn� = exp�−
1

4
�n − n��2�0

2�Re�erf� 	

�0
+

i

2
�n − n���0�� ,

�20�

and

snn� = 
�
nn� − nn

�n� − �n
, n�2 � n2,

− nn�1 − nn�
�

kBT
, n�2 = n2, � �21�

with nn being the fermion occupation numbers,

nn =
1

exp� �n − �

kBT
 + 1

. �22�

Since �0�	, we have

jnn� � exp�−
1

4
�n − n��2�0

2� , �23�

and this approximation will be used in the calculations be-
low.

Substituting Eq. �19� into Eq. �15� and taking into account
Eq. �21�, we obtain the first-order contribution to the
electron-spin density

ns
i��,r0� =

2JSi

�2	�2ns��,r0� , �24�

where ns�� ,r0� is given by the following expression:

ns��,r0� = �
nn�

�n�2�n2�

exp�− i�n − n���	jnn�

nn� − nn

�n� − �n

− �
nn�

�n�2=n2�

exp�− i�n − n���	jnn�
nn�1 − nn�

kBT
.

�25�

For a given value of the interaction radius r0 the function
ns�� ,r0� provides an oscillatory behavior of the electron-spin
density as a function of the polar angle �.

IV. RESULTS AND DISCUSSION

In this section we numerically analyze the electron-spin
density oscillations. Using Eq. �25� we calculate the function
ns�� ,r0�. The mesoscopic ring is assumed to be fabricated on
AlGaAs-GaAs heterostructures. The values of the parameters
are taken close to the ones used in previous works10 and in

experiments.22 The ring radius is R=40 nm, and the effec-
tive mass m=0.067m0, where m0 is the free-electron mass.

Let us first consider the behavior of ns�� ,r0� as a function
of the polar angle for the conventional model with r0=0. It is
shown in Fig. 2 for different values of the temperature T and
for the number of electrons Nel=24. In systems with a con-
tinuous spectrum the RKKY spin density oscillations behave
like cos�2pFr /�� �similar to the Friedel oscillations of the
electronic density�, where pF is the Fermi momentum and r
is the distance from the localized spin. In our case the spec-
trum is discrete. The analog of the Fermi momentum is the
energy-level number nF such that at T=0 the states with �n�
�nF are not populated. Since the state with a given value of
n can be occupied by two electrons, for Nel=24 one gets
nF=6 and thus 2nF=12. In agreement with this estimation
Fig. 2 shows 12 oscillations. As it was discussed in the lit-
erature �see, for example, Ref. 21�, the effect of the tempera-
ture on the RKKY spin density oscillations is to produce a
faster reduction in the oscillation amplitude with the distance
from the localized spin. For example, in three-dimensional
electron gases at T=0 the oscillation amplitude at large dis-
tances decreases as 1 /r3 and at finite temperatures it is
damped at the thermal distance �pF / �2	mkBT�. An analo-
gous behavior takes place in our case as well. As it can be
seen from Fig. 2 the amplitude of the oscillations as a func-
tion of the polar angle is damped faster for higher values of
the temperature.

Next we turn our attention to the effect of the finite inter-
action radius r0 of the exchange interaction on the electron-
spin density oscillations. From Eq. �23� it seems that for
realistic, that is, small, values of �0 the function jnn��1 and
a finite interaction radius value does not produce any change
in the electron-spin density oscillations in comparison with
the case r0=0. However, this reasoning is not entirely correct
because it does not take into consideration the number of
electrons in the gas surrounding the localized spin in the
ring. Indeed, when the number of electrons in the gas grows,
energy levels with higher values of �n� become important.
The contributions with higher values of �n−n�� are involved.
From Eqs. �23� and �25� one observes that in parallel with
this involvement the contributions from terms with high val-
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FIG. 2. �Color online� The function ns�� ,r0� describing the spin
density oscillations on a mesoscopic ring for the conventional
model with r0=0. The number of electrons is Nel=24.
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ues of �n−n�� get more suppressed. It does not matter how
small the interaction radius is. The main point is that it is
finite. For any finite value of r0 there exists a number of
electrons Nc in the gas such that for Nel�Nc the interaction
radius, no matter how small it is, will produce more and
more pronounced impact on the spin density. This is demon-
strated in Fig. 3 where the relative change in the spin density
at �=	 is depicted as a function of the number of the elec-
trons in the gas for different values of the interaction radius
r0. As expected the change in the electron-spin density in
comparison with the conventional model with r0=0 is negli-
gible for small numbers of the electron in the ring. For larger
numbers of the electrons the electron-spin density for finite
values of r0 starts to deviate from the model with r0=0. It is
interesting that even the interaction radius r0=0.05 nm can
produce an observable change in approximately 11% for
Nel=1600. The ring distance between the two points �=0
and �=	 is about 126 nm while the size of the area where
the spin is localized is 0.1 nm, that is, three orders of mag-
nitude less. An important result is that the small vicinity
around the localized spin is able to significantly change the
electron-spin density in every point of the system whose size
is several orders of magnitude larger than the size of the
domain over which the localized spin is spread.

The RKKY spin density oscillations for Nel=600 are dis-
played in Fig. 4 for different values of r0. In this case the
number of the oscillations is approximately equal to 300 and
thus only a small vicinity around �=	 is plotted to clearly
show the oscillations.

Finally, we note that semiquantitatively the oscillating be-
havior can be explained by the dominance of the term

cos�2nF��jnF,−nF
nnF

�1−nnF
� in Eq. �25�. The 2nF RKKY os-

cillations with r0=0 are weighted with jnF,−nF
�1. For small

Nel the weight jnF,−nF
�1 and plays no role but for large Nel

this weight reduces the amplitude of the 2nF RKKY oscilla-
tions by the factor exp�−�nF�0�2	.

V. SUMMARY

The RKKY spin density oscillations, induced by an ex-
change interaction between a localized spin and the electron
gas in which the spin is embedded, have been investigated at
finite temperatures taking into account finite values of the
exchange interaction radius. It has been found that the
electron-spin density in a noninteracting gas on a mesoscopic
ring is changed in comparison with the traditional model
which assumes that the interaction radius is zero. The ampli-
tude of the RKKY oscillations is suppressed when the num-
ber of the electrons in the gas increases. This suppression
gets stronger for larger values of the interaction radius.

A remarkable point is that as soon as the interaction radius
is finite, it is already not important how small it is because its
impact always becomes observable when the number of the
electrons in the ring is large enough.
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